On the Cauchy equation modulo Z

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cauchy Problem of the Ward Equation

We generalize the results of [22], [11], [8] to study the inverse scattering problem of the Ward equation with non-small data and solve the Cauchy problem of the Ward equation with a non-small purely continuous scattering data.

متن کامل

On the Cauchy Problem for a Nonlinearly Dispersive Wave Equation

We establish the local well-posedness for a new nonlinearly dispersive wave equation and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite time. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.

متن کامل

On Ulam's Type Stability of the Cauchy Additive Equation

We prove a general result on Ulam's type stability of the functional equation f(x + y) = f(x) + f(y), in the class of functions mapping a commutative group into a commutative group. As a consequence, we deduce from it some hyperstability outcomes. Moreover, we also show how to use that result to improve some earlier stability estimations given by Isaac and Rassias.

متن کامل

Structure of $Z^2$ modulo selfsimilar sublattices

In this paper we show the combinatorial structure of Z modulo sublattices selfsimilar to Z. The tool we use for dealing with this purpose is the notion of association scheme. We classify when the scheme defined by the lattice is imprimitive and characterize its decomposition in terms of the decomposition of the gaussian integer defining the lattice. This arise in the classification of different...

متن کامل

Non-Archimedean stability of Cauchy-Jensen Type functional equation

In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 1988

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm-131-2-143-148